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Problem A – Analyzing Contracts
Author : Agust́ın Santiago Gutiérrez, Argentina

This is a more challenging version of problem D: “Money for Nothing” from the ICPC World
Finals 2017. The problem can be found, for example, at this link: https://vjudge.net/

problem/Kattis-money. The expected solution for this problem has a time complexity of
O(N logN) and uses a divide and conquer technique known as “divide and conquer optimiza-
tion”. This technique is commonly applied within a larger dynamic programming algorithm
to speed up the computation of a formula. In the 2017 problem, there is no DP algorithm,
and this “divide and conquer optimization” is essentially the whole solution, as detailed in the
following link: https://www.csc.kth.se/~austrin/icpc/finals2017solutions.pdf. An-
other solution mentioned involves a more complex geometric sweep line approach that deals
with convex polygons “Voronoi style”.

The author found no way to solve the proposed problem using either of these two techniques
because they are essentially “global” and don’t handle queries well. The proposed problem is
clearly more challenging because solving an input where all clients are given first and only after
all queries are made would solve the corresponding 2017 problem.

The N suppliers are naturally sorted as given in the input file, which is something that the
2017 solution also uses. Let’s define, for each client j, a function fj that maps supplier indexes
to the corresponding matching value, where fj(i) = (Cj − Vi)× (Ej − Si + 1), representing the
profit from matching client j with supplier i (or 0 if such a pair is not profitable).

The critical property is that when considering any two particular clients j1 and j2, one of
two things will happen:

1. One client will “dominate” the other, having greater or equal values for both Cj and
Ej . In this case, one function fj is greater or equal to the other function over the entire
domain.

2. We have Ej1 < Ej2 and Cj1 > Cj2 . In this case, “the sign” of the difference function
fj2 − fj1 can never go from positive to negative. In other words, “once fj2 is strictly
larger than fj1 , it will be larger or equal for the rest of the domain”.

A geometric proof, similar to the one used for the 2017 problem, can be provided. Here, fj(i)
is the area of a rectangle with vertices (Si, Vi) and (Ej + 1, Cj). It can be observed that the
difference function fj2 − fj1 actually increases when moving from i to i + 1 if both fj2(i) and
fj2(i+ 1) are greater than 0. If fj2 becomes 0 at some i (no supplier point available below and
to the left), after already being positive, then fj1 will also be 0 from that point on.

https://vjudge.net/problem/Kattis-money
https://vjudge.net/problem/Kattis-money
https://www.csc.kth.se/~austrin/icpc/finals2017solutions.pdf
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In both cases, we arrive at the critical property that any two fj functions “cross” at most
once. This is a condition needed for functions to be stored in a Li-Chao Tree, as detailed here:
https://robert1003.github.io/2020/02/06/li-chao-segment-tree.html.

Thus, the solution is as follows: view each client j as a function to be stored in a Li-Chao
Tree over the domain [1, N ]. Then, the problem queries ask for the maximum value of fj(i)
for a given i, considering the functions fj already stored in the Li-Chao Tree. As long as we
can reasonably and quickly compare two functions at a node of the tree to decide “which one
wins over which half”, we can use the Li-Chao Tree structure in the standard way. Each “add
client” query adds a function to the tree, and this can be computed with care, taking into
account the 0-valued region of each function fj in both the lowest and highest values of the
domain.

The entire solution has a runtime complexity of O(N +Q logN) if efficiently implemented,
and possibly O(N +Q log2N) if some unnecessary binary search to handle the 0s is performed
at each node during the Li-Chao insertion. Efficient O(N + Q log2N) implementations were
allowed to pass. Implementations with a complexity of O(N +Q logN) were expected to pass
even if not coded as efficiently.

There is also the possiblity of implementing anO(N+Q
√
N) approach by sqrt-decomposition

on the queries: If we split the queries into Q
B blocks of size B, then after reading each block we

can run the global divide and conquer solution for the 2017 version of the problem to compute
for each supplier the best client in that block. The complexity of that divide and conquer is

O(N +B logN)

if done efficiently, and we have to run it Q
B times. Then when answering each query we only need

to explicitly check clients in the current block one by one, as the previous ones were already
considered by the runs of the divide and conquer at the end of previous blocks, so that has a
total cost ofQ·B. Adding both costs we get a total of Q

B (N+B logN)+Q·B = Q(NB +logN+B),

which choosing B =
√
N gives an O(Q

√
N) total query complexity. The runtime of this solution

varies quite a lot depending on implementation efficiency, and efficient implementations were
accepted and even much faster than the tested O(N +Q log2N) solutions.

Please note that the fact that suppliers (while not clients) are already “filtered” so that
there are no “dominated pairs” is a requirement for this solution to work. The well-defined
total order over the abstract domain of indexes is what ultimately allows using a Li-Chao Tree.
The situation is unlike in the 2017 problem, which asks for only the global maximum. In this
problem, lifting the “sorted” restriction would not allow for the simple removal of dominated
pairs as in the 2017 problem because queries might ask about any particular supplier, even
those that are dominated by a better supplier.

Problem B – Blackboard Game
Author : Arthur Nascimento, Brasil

Notice that if, at any moment in the middle of the game, it is Carlinhos’ turn and his current
sum is greater than Equalizer’s, he can win by always picking the greatest number from now
on. The same applies if his current sum is smaller. So Equalizer is always forced to circle a
number that is equal to Carlinhos’ last move.

Now, after working out some small cases, we can guess that the winning positions for
Equalizer are the ones where the frequency of each value is a multiple of 3:

• If all the frequencies are indeed divisible by 3, no matter Carlinhos’ chosen number,
Equalizer will be able to circle and erase two occurrences of that value, making it so all
frequencies are still divisible by 3. Eventually, the game will end, and the sums will stay
equal.

https://robert1003.github.io/2020/02/06/li-chao-segment-tree.html
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• If not, there will either exist at least 3 values x with freq[x]%3 = 1, or 3 values y with
freq[y]%3 = 2, or two values x and y with freq[x]%3 = 1 and freq[y]%3 = 2. In all of
these cases, Carlinhos can guarantee that after Equalizer’s move, it will still hold that
not all frequencies are divisible by 3. In the first two cases, he can do anything, and
in the third case, he should pick x. Eventually, there will appear some number x with
freq[x] = 1, and Carlinhos can win by picking it.

So the solution is just to count the frequency of each value.

Problem C – Candy Rush
Author : Rafael Grandsire & Pedro Paniago, Brasil

Special case: two candies only

When k = 2, the problem can be seen as finding the largest subsegment with the same
number of 1s and 2s. The observation for a fast solution is that if we create another sequence
di = 2ci − 3 (1s are turned into -1 and 2s into 1), one valid subsegment of {ci} is now a sum-0
subsegment of {di}. The largest one can easily be found in O(n) time and memory.

When we compute the prefix sum sequence pi =
∑

1≤j≤i dj , the sum of a subsegment defined
by l and r is

∑
l≤i≤r di = pr − pl−1. The above equation only equals 0 when pr = pl−1. At the

end, we can compute for each index r the least index l − 1 that has the same prefix sum to
update our answer.

O(nk log(n)) solution

Now, instead of having 1s and -1s, we can have a frequency vector for each element and
match two indices when their differences are multiples of the all-1s vector.

Take n = 7, k = 3, and c = {2, 1, 2, 3, 1, 2, 3}. The prefix vectors are:

p0 =

0
1
0

 p1 =

1
1
0

 p2 =

1
2
0

 p3 =

1
2
1

 p4 =

2
2
1

 p5 =

2
3
1

 p6 =

2
3
2


Notice that the subsegments [1, 3], [4, 6], and [1, 6] all have the same number of elements,

and thus, the difference is a multiple of the all-1s vector. This leads to a solution that uses the
prefix vector of frequency as a key.

To check whether the difference of two vectors is a multiple of the all-1s vector, we need
a normalization trick: whenever all the entries are at least one, we decrement 1 from them,
making at least one of the entries equal to 0. For the same instance we analyzed before, the
prefix vectors we compute are, in fact:

p0 =

0
1
0

 p1 =

1
1
0

 p2 =

1
2
0

 p3 =

0
1
0

 p4 =

1
1
0

 p5 =

1
2
0

 p6 =

0
1
0


With that, we should check for equality instead of the multiple of all-1s vector property.

We can easily detect that the segment [1, 6] is valid because p0 = p6, the same property we
exploited when there were only two candies.

O(n2 log(n)/k) solution

Even though the last solution can be enough for large n and small k, it behaves like a
quadratic solution when k = Θ(n). We will now think of a solution that works fast for large k.

Intuitively, when k is large, there will be only a small number of multiples of k that can
be the answer. In fact, the number of multiples of k less than n is bn/kc. We can then use a
sliding window for each multiple of k and use a data structure to check if all frequencies are
the same.
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O(n
√
n log(n)) solution

If we combine the solutions with complexity O(nk log(n)) and O(n2 log(n)/k) and decide
to use the faster one depending on the relationship between n and k, we have a solution of
complexity O(n

√
n log(n)). The threshold to use the first solution should be k ≤

√
n, and we

should use the second one in the other case.

O(n log(n)) solution

All previous solutions have super simple and direct implementation and analysis. But an
O(n log(n)) solution with hashes also exists. One can use amortized analysis to notice that
the normalization step described earlier is O(1) and maintain dynamically the hash of the pref
vector. Instead of indexing using the vector as the key, we will index by the hash of the vector
and reduce the complexity to look up a similar vector to O(log(n)), instead of O(k log(n)).

The hash we choose is
∑

1≤i≤k b
i · freq[i]. It is pretty similar to the well-known hash of

strings and supports updates on the freq vector easily.
Time limit was set such that well implemented O(n

√
n log(n)) could also get an AC.

Problem D – Deciphering WordWhiz
Author : Paulo Cezar Pereira Costa, Brasil

One of the ways to approach this problem is simply interating on all words of the dictonary
for each guess and counting those that would have the same feedback.

Note that it’s guaranteed that valid words do not have repeated letters, this is what allows
the game rules to be so succintly described and make it quite easy to calculate the feedback for
each word. To calculate the feedback we simply iterate on each letter of the guess word and
compare it with the characters of the secret word. Below is a sample python implementation
of this approach.

1 #!/usr/bin/env python3

2

3 N = int(input())

4 dictionary = [input() for _ in range(N)]

5 secret_word = dictionary[0]

6 G = int(input())

7 feedbacks = [input() for _ in range(G)]

8

9 def generate_feedback(word, secret_word):

10 feedback = ""

11 for i in range(5):

12 if word[i] == secret_word[i]:

13 feedback += "*"

14 elif word[i] in secret_word:

15 feedback += "!"

16 else:

17 feedback += "X"

18 return feedback

19

20 for feedback in feedbacks:

21 possible_word_count = 0

22

23 for word in dictionary:

24 if generate_feedback(word, secret_word) == feedback:

25 possible_word_count += 1

26

27 print(possible_word_count)
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Problem E – Elevated Profits
Author : Arthur Nascimento, Brasil

We will think about the answer backwards, so let’s imagine we are removing leaves from
the tree and want to maximize

∑N
i=1(N − i+ 1) · L[i], where L[i] is the i-th removed leaf.

Let’s first solve the particular case where the tree’s root has 2 kids, and both are paths.
We will focus on how to build the optimal permutation L. If we group vertices that are next
to each order in L and belong to the same subtree, we will have a series of alternating color
buckets.

If we swap two adjacent buckets A and B, that would still produce a valid permutation,
and its score in relation to the old one would depend on how the indices of the vertices in
the buckets changed: Each element x in B would contribute |A| · x to the difference, and each
element x in A would contribute −|B| · x. In the optimal answer, this change should always
be zero or negative, so it holds that |A| ·

∑
xb ≤ |B| ·

∑
xa. So, the buckets must be sorted in

non-increasing order by the average value of their indices.
Now we claim that L will begin with the greatest average prefix amongst both arrays. If

this was not the case, that would lead to existing some bucket with greater average than the
first bucket, which is a contradiction. So the following algorithm will solve the problem for two
arrays:

• For each of the arrays, build its buckets partition: find its greatest average prefix, delete
it, find the greatest average prefix of the remaining array, delete it, and so on. (we will
discuss later how to do this fast)

• Merge the two partitions greedily with two pointers, always picking the one with greater
average

If there are ties in the algorithm above (for example, multiple prefixes with maximum average)
we can prove that any choice works.

Now, to solve the general case of a tree, we can think that the algorithm above is basically
merging two subtrees that are paths into one larger path. But we can turn any tree into a path
by repeating this. Just do a dfs, recursively turn your kids into paths, and merge them. So
this gives a slow solution for the general case.

(To actually prove the algorithm above works, we need to prove the the optimal way to
merge two paths does not depend on the rest of the tree. To this, we can consider the optimal
answer up to the end x of those paths, and also group them into buckets by color, but now
there will be a third color to indicate vertices outside our two paths. And now we can replicate
the exchange argument and average monotonicity from above.)

The key point to optimize the solution is that, when we merge two paths, the buckets
partition of the merged set of nodes will be the union of the buckets partition of the paths, so
there is no need to recalculate it. So we can use set::set to merge those sets and always maintain
them sorted by decreasing average, and use small-to-large technique to do so in O(N log2N).

However, after we have merged the sets from all the kids of some vertex x, we have to
append x to the end of this path, and this last addition might change a lot our path’s buckets
partition (imagine, for instance, if x is much bigger than all its children). We can fix this
fast with a stack-ish approach: let B be our last bucket (that is, the one with the smallest
average). If x < average(B), then our partition will not change, and x will be added in the
end, as a single-element bucket.b And if x > average(B), then B and x will be in the same
bucket in the new partition (possibly with some more elements), so we merge them into a single
bucket. Now, we compare our new bucket with the second-to-last bucket and keep repeating
the process. This runs in amortized complexity.

So we keep merging paths until the whole tree becomes a path, which will be the optimal
permutation.
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One last observation is that we don’t need to find the permutation itself, only its value . But
since a bucket S that we create will never be torn apart, all we need to keep in order to run the
algorithm and find the final answer is its size, its sum, and the sum

∑N
i=1(|S|−i+1) ·S[i].

Problem F – Forward and Backward
Author : Alejandro Strejilevich de Loma, Argentina

Naive algorithm

Let Nb be the representation of N in base b.
The naive algorithm is to check whether Nb is a palindrome for each possible b. Since there

are O(N) allowed values for b, while computing and checking Nb can be done in O(logN), the
whole process is O(N logN).

The running time can be improved by adding some math. The more math we add, the
better algorithm we get.

Improved algorithm

Notice that the statement bans the values b > N because Nb would be a single-digit palindrome
for any of those infinitely many cases. Regarding b = N , it is easy to see that NN = 10N is
not a palindrome, while for b = N − 1 ≥ 2 we have NN−1 = 11N−1 which is a palindrome.

Once those high values for b have been worked out, it can be proved that Nb is not a
palindrome for any b ∈ [N/2, N − 2] (because we would have Nb = 1db with the digit db 6= 1).
A simple observation that can be used to speed up the algorithm a little further is that N
cannot be a multiple of b (because the last digit of Nb would be 0).

With the above ideas we can halve the running time of the naive algorithm. To summarize,
it is enough to check the values b ∈ [2, N/2) that do not divide N , including b = N − 1 ≥ 2 in
the final output.

Intended algorithm

It is possible to extend our analysis of the interval [N/2, N) to any interval of the form [N/(d+
1), N/d). A simple way to achieve this is to split the possible palindromes in two groups: one
group having two-digits palindromes, and the other group having palindromes of at least three
digits.

≥ 3: The ”smallest” palindrome in this group is 101b. This means that we must have N ≥
b2 + 1, which is equivalent to b ≤

√
N − 1

Thus, to obtain the bases in this group of palindromes it is enough to apply the naive
algorithm for b in the interval [2,

√
N − 1].

Since O(
√
N) values of b are analyzed, and each of them requires O(logN) operations,

the total complexity for this group of palindromes is O(
√
N logN).

Note that we can still speed up the process by discarding the values of b such that N is
a multiple of b.

2: In this case we have Nb = ddb, where db is a digit in base b, that is, 1 ≤ d ≤ b − 1
(d = 0 is not allowed in this context). This means that N = db+ d = d(b+ 1), which is
equivalent to b = N/d−1. Since d ≤ b−1 we conclude d ≤ N/d−2, which is equivalent to
d2 + 2d−N ≤ 0. The roots of the smiling parabola f(d) = d2 + 2d−N are −1±

√
1 +N ,

and then we get the restriction d ≤ −1 +
√

1 +N .
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Thus, to obtain the bases of this group of palindromes in ascending order, it is enough
to iterate d backwards in the interval [1,−1 +

√
1 +N ]. If for any of these values, N is a

multiple of d, then we know that Nb is the two-digits palindrome ddb with b = N/d− 1.

Since O(
√
N) values of d are analyzed, and each of them requires O(1) operations, the

total complexity for this group of palindromes is O(
√
N).

As it can be seen, the two groups of palindromes can be handled in O(
√
N logN) time.

Problem G – GPS on a Flat Earth
Author : Mário da Silva, Brasil

Just keep track of the current set of possible locations. This may be one or two points, or a
couple line segments.

Implementing this in a bug-free manner seems to be the main challenge here. In the context
of Manhattan distance, the coverage area resembles a diamond, essentially a square rotated by
45 degrees. If we rotate the coordinate system by 45 degrees, the diamond becomes a square,
which is easier to work with.

Then, instead of worrying about the entire square at once, we can look only at the segments
that it’s comprised of, for which calculating the intersection should be a lot easier. The only
case work needed in this scenario is whether the segments share the same orientation or not as
that defines how their intersection (if any) will look like. Once we are done handling all towers
we can simply iterate on the points in each segment, converting them back into the original
coordinate system, sort all of the visited points and print the result. Below is a possible way
to implement all of this.

1 struct segment

2 {

3 const bool asc;

4 const int b, e, h;

5 segment(bool a = 0, int b = 0, int e = 0, int h = 0)

6 : asc(a), b(b), e(e), h(h) {}

7

8 bool isempty() const { return b == e; }

9

10 bool inbetween(int p) const { return b <= p && p < e; }

11

12 segment intersect(const segment& s) const {

13 if (isempty() || s.isempty()) return segment();

14

15 if (asc == s.asc) {

16 if (h != s.h) return segment();

17

18 int nb = max(b, s.b);

19 int ne = min(e, s.e);

20 ne = max(ne, nb);

21 return segment(asc, nb, ne, h);

22 } else {

23 if (inbetween(s.h) && s.inbetween(h)) {

24 return segment(asc, s.h, s.h+1, h);

25 } else return segment();

26 }

27 }

28

29 vector<pii> traverse() const {

30 if (isempty()) return {};

31

32 vector<pii> ret;
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33

34 for (int p = b; p < e; p++) {

35 int x2 = p - h;

36 int y2 = p + h;

37 if (!asc) x2 = -x2;

38

39 if (!(x2&1) || !(y2&1))

40 ret.pb(pii(x2/2, y2/2));

41 }

42

43 return ret;

44 }

45 };

46

47 vector<segment> interpret(int x, int y, int d)

48 {

49 int cx = x+y;

50 int cy = y-x;

51

52 if (d == 0) {

53 return {

54 segment(1, cx, cx+1, cy)

55 };

56 }

57

58 return {

59 segment(1, cx-d, cx+d+1, cy-d),

60 segment(1, cx-d, cx+d+1, cy+d),

61 segment(0, cy-d+1, cy+d, cx-d),

62 segment(0, cy-d+1, cy+d, cx+d)

63 };

64 }

65

66 vector<segment> intersect(const vector<segment>& a, const vector<segment>& b)

67 {

68 vector<segment> result;

69

70 for (auto sa: a) {

71 for (auto sb: b) {

72 segment c = sa.intersect(sb);

73 if (!c.isempty()) result.push_back(c);

74 }

75 }

76

77 return result;

78 }

Problem H – Health in Hazard
Author : Victor de Sousa Lamarca, Brasil

This problem can be solved using binary search along with the half-plane intersection
algorithm. The half-plane intersection problem is well-known in ICPC, although it may not
be very common (it’s rarely seen in Latin America stages, but it has been encountered in
UNICAMP summer camps). There are tutorials available on the cp-algorithms website that
explain the half-plane intersection algorithm in detail.

More specifically, each given line partitions the space into two parts, and we select the
half-plane that contains the origin. We use binary search on the prediction. For prediction i,
we consider the first i half-planes and check if the area forms a finite polygon. If it does we
look at the distances from the polygon vertices to the origin, if all of them are lower than D,
then the answer is to the left of i (including i); if not, the answer is to the right.
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Tutorials for the half-plane intersection algorithm typically list the segments that belong to
the intersection or calculate the area without handling the case for infinite area. However, it
is certainly possible to check for the case of an infinite area. The complexity of calculating the
half-plane for n lines is O(n log n). When performing the binary search, the final complexity is
O(n log2 n).

Alternatively, one can completely solve the problem without half-plane intersection by
reducing the problem to checking if a list of circular arcs span the whole circle. Like before,
binary search and consider the first i half-planes. Intersect each of those lines with the circle
of radius D to get an open circular arc of unreachable positions (if there is an intersection with
the circle at all for that halfplane). Then we just need to check if those arcs span the whole
circle. For that, the intersection points can be sorted by angle and the circle “unrolled” so that
points are now in [0, 2π] number line and arcs are normal intervals (arcs crossing the 0 = 2π
“cutpoint” can be split into two intervals). Then for each interval there are two events, a +1
event at its left end and a −1 event at its right end. We can sort and process events and check
that current count is never zero to check if full circle is covered.

Problem I – Inversions
Author : Gabriel Poesia, Brasil

The classical algorithm based on merge-sort to count inversions in O(nlogn) doesnt work since
we can’t even build the string explicitly (n would go up to 1017). However, here the number
of distinct elements in the string is small (up to 26), and this can be exploited.

Let f(s) be the number of inversions in a string s. Given two strings s1 and s2, we have
f(s1 + s2) = f(s1) + f(s2) + g(s1, s2) where g is the number of inversions that will occur due
to characters in s2 being smaller (in alphabetical order) than characters from s1.

We can easily calculate f(s) for our input string in O(26×|s|), initialize an array cnts with
zeroes then for each character c in s add the current counts of characters greater than c to the
number of inversions and increment the count for c.

We can then multiply that number of inversions by N and all that is left to compute are
the intersections of type g. In order to do that we can reuse the cnts array we just calculated.
We know that we need to add g(S, S) to the total number of inversions N ∗ (N − 1)/2 times,
and to calculate g we can just iterate on all (c1, c2) pairs of letters where c1 < c2 and multiply
their cnts. Below is a sample implementation of this approach in Python:

1 #!/usr/bin/env python3

2

3 MOD = 10**9 + 7

4

5 S = input()

6 N = int(input())

7

8 cnts = [0] * 26

9

10 inversions = 0

11 for c in S:

12 idx = ord(c) - ord('a')

13 inversions += sum(cnts[idx+1:])

14 cnts[idx] += 1

15

16 inversions *= N

17

18 g = 0

19 for c_1 in range(26):

20 for c_2 in range(c_1+1, 26):

21 g += cnts[c_1] * cnts[c_2]
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22

23 inversions += g * N * (N - 1) // 2

24

25 print(inversions % MOD)

Note that in C++ one would have to be more careful to avoid overflows. The modulo
operation could not be simply excuted at the end but also on the intermediate calculations.

Problem J – Journey of the Robber
Author : Giovanna Kobus Conrado, Brasil

We can use centroid decomposition to solve the problem in O(n log2 n), by building the centroid
tree and storing the distance for every node in the subtree. After this list has been sorted by
node index, prefix minimum distance can be calculated and the closest node smaller than a
certain index can be calculated via binary search.

There’s also a O(n
√
n) solutions based on sqrt decompostion. From higher to lower iden-

tifiers you activate blocks of size sqrt, then you wanna get the answer for the next block. For
that do a multi source bfs from each of the already activated vertices. This will give some
candidate for the answer to each of the vertices of the current block. Besides that, for a certain
block, you also need to check the distance for each pair of the vertices for another candidate
answer which can be done using LCA.

Problem K – Keen on Order
Author : Arthur Nascimento, Brasil

If K ≥ 25, we can always find one permutation by following this strategy:
Pick the number x such that its first occurrence in V is the greatest possible. Then pick

the number y 6= x such that its first occurrence, only considering occurrences after x, is the
greatest possible. And so on. If at any time there is some unpicked number with no such first
occurrence, we have found a valid answer. But there are at least K numbers up to x. There
are at least K − 1 numbers after x and up to y, and so on. Since 1 + 2 + . . . + 25 > 300, we
will always find one answer.

Now, if K ≤ 24, we can use bitmask dynamic programming:
Given a subset mask of the values, dp[mask] will return the maximum value of the minimal

ending of an occurrence of a permutation as a subsequence of V, over all permutations of
the elements in mask. If there is one such permutation that is not a subsequence of V,
dp[mask] =∞. So,

dp[mask] = max
x∈mask

next(x,dp[mask − x])

Where next(A, i) is the first index j > i such that V [j] = A. So we can use the DP to
construct a valid answer in O(K · 2K).
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Problem L – Latam++
Author : Agust́ın Santiago Gutiérrez, Argentina

A contestant might get the impression that this is a parsers or language-theoretic problem
and avoid it, but the problem is better solved in a relatively intuitive way without involving
formal grammars. The first observation is that since variable names and even which variables
are equal to others is completely irrelevant, we can imagine that “a” is the only letter for ease
of explanation, as replacing all letters with “a” does not change the answer.

Similarly, we can imagine that “+” is the only operator, as we can replace all others with
“+” without changing the answer, because the validity of an expression does not care about
its meaning or the nature of its operators (as crucially, they are all binary operators).

Now, our string consists of only four characters: “a”, “+”, “(”, and “)”. By thinking a bit
about what is a valid expression, one can discover that a non-empty string is a valid expression
if and only if:

1. The “(” and “)” are “correctly-parenthesized”

2. The string does not contain any of these particular pairs of consecutive characters:

• ()

• (+

• +)

• ++

• )(

• )a

• a(

3. The string does not start or end with “+”

For checking the first condition, we can define the balance of a string as the number of “(”
characters minus the number of “)” characters. A string is “correctly-parenthesized” if and
only if it has zero balance, and all of its prefixes have non-negative balance.

Now we have to count the number of substrings that have all of these properties. We can
easily make one O(N) pass through the input string and identify all forbidden pairs that occur.
Then we know that valid substrings will never span any of those pairs.

We can then divide our problem into independent substrings that no longer contain forbid-
den pairs. For example, for the string “aaaaaa)(bbb++bbb”, there are two forbidden pairs,
and we can split it into “aaaaaa)”, “(bbb+”, and “+bbb”. The final answer is the sum of the
answers for each part.

Then for each part, we just need to focus on counting the number of substrings that are
correctly parenthesized and start and end at valid characters (different to “+”), so we can think
that each character is either -1 (closing parenthesis), 0 (“+” or “a”), or 1 (opening parenthesis)
as explained before.

The author sees two main ways to count this:

1. Divide and conquer: if we split at the middle, we can independently count substrings of
the left and right parts, and then we are only missing substrings that span the cut, so
that they contain both the last character of the first part and the first character of the
second part.

We can count those in O(N): they are formed by a “good” prefix of the second part and
a “good” suffix of the first part having opposite balance so that the sum is zero. A good
suffix of the first part is one having greater or equal balance than all its proper suffixes.
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Analogously, a good prefix of the second part is one having lower or equal balance than
all its proper prefixes. So if we iterate and keep count for each possible balance k how
many good prefixes of the second part and good suffixes of the first part have balance k,
then the total is

∑
k left(k) · right(−k).

This has complexity O(NlgN) as it has the same recursion formula as the well-known
Merge Sort.

2. Brute force the last character of the substring, iterating left to right. If we have already
precomputed the balance of all prefixes of the main string, then possible starting positions
must be prefixes having the same balance as the prefix ending at this last character. From
those, only those that do not cross a prefix having strictly less balance can be used. With
a data structure for RMQ and binary search, as well as keeping the indices of prefixes
having balance k for each k, we can actually count how many starting positions will work
in logarithmic time, for a total O(NlgN) solution.

Problem M – Meeting Point
Author : Daniel Bossle, Brasil

This problem can be easily solved in O(M logN) with Dijkstra’s shortest path algorithm.

1. Run Dijkstra to find the distance from P to every node.

2. Remove G from the graph and run Dijkstra again. A simple way to do achieve this is
implementing Dijkstra in a separate function that takes a “skip” parameter indicating a
vertex that should not be added to the queue.

3. Vertices V with dist(V ) = 2 × dist(G) on the first pass, and higher dist on the second
pass are all viable options for the misleading meeting point.


