Maratona SBC de Programacao — Fase Zero — 2025 1

Quantum Science ~
and Technology
X “
7, S ‘:I

Vil MARATONA DE
PROGRAMAGAQ
2025

X X X

Maratona SBC
de Programacgao

L 4

IV MARATONA DE
PROGRAMACAO

Realizagéo: Tre b Y Apoio: Go g|e s?&:ﬂar uber lepl 2025

Fase Zero da Maratona SBC de Programacgao 2025

May 24 2025

Problem set

General information

This problem set contains 13 problems, the pages are numbered from 1 to [25] including this cover
page. Please check if the problem set is complete.

Program names

e For solutions in C, C++, and Python, the source filename is not significant; it can be any
name.

e [f the solution is in Java or Kotlin, the source file must be named A. java or A.kt respectively,
where A should be replaced by the uppercase letter that identifies the problem. Remember
that in Java, the name of the main class must be the same as the name of the file.

Input
e The input must be read from the standard input.

e The input consists of exactly one single test case, described in a number of lines that depends
on the problem. The input format is exactly as described in each problem, with no extra
content.

e All lines of the input, including the last one, end with the newline character (\n).
e The input does not contain empty lines.

¢ When the input contains multiple values separated by spaces, there is exactly one whitespace
between two consecutive values on the same line.

Output

e The output must be written to the standard output.
e The output must adhere to the format specified in the statement without any extra data.

¢ Whitespace and line breaks are treated equally for grading purposes, and extra spaces are
ignored.

e When an output value is a real number, use the number of decimal places corresponding to
the precision required in the statement.

Maratona SBC de Programacao — Fase Zero — 2025 2

Competition rules

The use of up to three computers for system access is allowed, one for each competitor.
Competitors do not need to be in the same physical space.

It is allowed to view and even copy any material (printed, digital, or even online) that was
available before the competition started.

The use of generative Al tools in general, such as ChatGPT, DeepSeek, Gemini, Claude,
Copilot, Cursor, among others, is prohibited.

It is allowed for the three competitors of the same team to communicate with each other
through a communication channel restricted only to the team.

Competitors are not allowed to leak any information about the contest to anyone outside their
own team.

Communication between teams is prohibited.

Communication between competitors and coaches during the contest is not allowed. Coaches
cannot participate in the contest, cannot see the problems during the contest, nor can they
log into the special account created in BOCA for the competitors.

Every code submission during the contest must be a legitimate attempt to solve the problem.
Attempts to mine test cases and circumvent the system will be penalized.

If behavior that violates any of the above items is identified or if there are reports to be investigated
and proven, the offending teams will be disqualified.

Testing environment information

The time limit can be found in the statement of each problem.
The memory limit for all problems is 1 GiB.

The execution stack has a limit of 100 MiB.

The source file can be a maximum of 100 KiB.

The output can be a maximum of 1 MiB.

Compilation commands used

C: gcc -g -02 -std=gnull -static -1m
C++20: g++ -g -02 -std=gnu++20 -static
Java: javac

Kotlin: kotlinc -J-Xms1024m -J-Xmx1024m -J-Xss100m -include-runtime

C/C++

Your program must return zero, executing, as the last command, return 0 or exit(0).

It is known that in some cases of problems with very large inputs, cin objects can be slow
due to the synchronization of stdio buffers. If you wish to use cin and cout, one way to
work around this problem is to execute the command ios_base::sync_with_stdio(0) at
the beginning of your main function. Note that in this case, using scanf and printf in the
same program is discouraged, as separate buffers can lead to inappropriate behaviors.

Maratona SBC de Programacao — Fase Zero — 2025 3

Java

e Do not declare “package” in your source code.

e The convention of naming the file according to the problem letter must be followed. For
example, for problem A, your file must be named A. java with a public class A.

e Execution command: java -Xms1024m -Xmx1024m -Xss20m <fileName>.

e Attention: it is not guaranteed that Java solutions will execute within the allocated time limit.

Kotlin

e Do not declare “package” in your source code.

e The convention of naming the file according to the problem letter must be followed. For
example, for problem A, your file must be named A.kt without declaring the main class
(resulting in an implicit class called AKt).

e Execution command: java -Xms1024m -Xmx1024m -Xss20m <fileName>.
e Attention: it is not guaranteed that Kotlin solutions will execute within the allocated time

limit.

Python

e The Python interpreter used is PyPy, which offers more speed in execution.
e Python is at version 3.8.13, and in case of a syntax error, a Runtime Error will be returned.

e Attention: it is not guaranteed that Python solutions will execute within the allocated time
limit.

Maratona SBC de Programacao — Fase Zero — 2025 4

Instructions for using the BOCA submission system

Everything in BOCA is done through the web interface, so before taking any action, make sure that
the browser is open on the BOCA judge’s page, and that you are logged in.

Using the system

BOCA does not have dynamic updates. To get the latest updates, ensure that the page
content is refreshed (for example, by using F5).

It is possible to download the statements of the contest and each of the problems in the
Problems tab.

To submit solutions and see the results of your submissions, use the Runs tab. To make a
submission, choose the appropriate problem, the programming language used, and submit the
source file.

To see global clarifications and request clarifications about the statement of a problem, use
the Clarifications tab. Choose the appropriate problem, write your question, submit it,
and wait for the response that will appear on this screen.

To see the scoreboard, use the Score tab.

The Tasks tab is used to submit printing tasks and request assistance in physical locations.
In remote competitions, this feature is not used.

The Backups tab provides a file-sharing environment for the team. If it is necessary to switch
machines during the competition, use this area to transfer files to the new computer.

Submission result

The code will be judged by an automatic judge that will evaluate the program’s behavior
for a set of secret test cases. Although each problem contains example test cases with which
competitors can test their codes locally, it is emphasized that the set of secret test cases from
the judge is generally much larger. Note that your submission may also be manually reviewed
by the competition judges, extending the judging time.

Each submission can result in one of the following verdicts:

— YES: your code was accepted, the output of your solution matches that of the judges,
and your team won a balloon! Congratulations!

— NO - Wrong answer: your code was not accepted because the program did not print the
expected output for some test case.

— NO - Time limit exceeded: your code was not accepted because the program took too
long to run for some test case.

— NO - Runtime error: your code was not accepted because the program was aborted
by the operating system for performing some invalid operation, such as illegal memory
access, excessive memory allocation, or floating-point exception.

— NO - Compilation error: your code was not accepted because the compiler could not
compile it correctly. Check the compilation options used for your programming language.
Note that this verdict does not incur a penalty in the score.

— NO - Name mismatch: only for Java and Kotlin submissions, this verdict is given when
the team submits a solution with a main class name different from the specified one.

Maratona SBC de Programacao — Fase Zero — 2025)

Problem A
Ambiguous Schrédinger Cat

Time limit: 0.5 s | Memory limit: 1 GiB

In the year 1935, physicist Erwin Schréodinger received a mysterious package labeled only as “Box
42.” Inside, a bizarre quantum experiment was set up by a group of eccentric scientists. The box
contains a cat, a vial of poison activated by an unstable radioactive atom, and a note beside it with
a single instruction: “Do not open unless you are ready to accept a single truth.”

According to quantum physics, while the box is closed, it is impossible to determine the state of the
cat. The entire system is in a quantum superposition: the cat is both alive and dead simultaneously.
However, if someone has the courage to open the box, the superposition collapses, revealing whether
the cat is indeed alive or dead.

You, as an apprentice of the old Schrodinger, have found records with the state of the box and the
internal reading of the state of the cat; these are privileged information that is not observable to
anyone who has not opened the box. Your mission is to determine the observable state of the cat
at the described moment.

Input

The only line of input contains two integers C' and G (0 < C,G < 1). C = 1 indicates that the
box is closed, and C' = 0 indicates that it is open. G = 1 indicates that the cat is alive, and G =0
indicates that the cat is dead.

Output

Print a single string, “vivo e morto” if it is not possible to know the state of the cat, “vivo” if it
is possible to determine that the cat is alive, or “morto” if it is possible to determine that the cat
is dead.

Sample input 1 Sample output 1
10 vivo e morto
Sample input 2 Sample output 2
01 vivo

Maratona SBC de Programacao — Fase Zero — 2025 6

Problem B
Periodic Search

Time limit: 0.5 s | Memory limit: 1 GiB

An analysis was conducted on the evolution of the possible quantum states of a system of particles,
resulting in a rooted tree of N states. Each state, except for the root state, is connected to its
parent state by an edge that has a label of a lowercase Latin letter from a to z. This label describes
the type of interference that caused the system to collapse into another state. The sequence of
interferences of a state is defined as the concatenation of the labels of the edges on the path from
the root to that state.

For each state, we define the minimum periodicity of its sequence as the smallest integer P > 1
such that the sequence can be obtained by repeating a smaller sequence of length P multiple times
(at least twice). If there is no valid integer P > 1, the sequence is considered to have a periodicity
of 0. The empty sequence from the root is considered to have a periodicity of 0.

We are interested in studying periodic interferences within the system of particles, so your task is
to determine, among all the states from the root, the highest value of minimum periodicity of their
respective interference sequences.

Input

The first line contains an integer N (2 < N < 10°), the number of states. The second line contains
N —1 integers Pj, Py, ..., Pny—1 (1 < P; < i), where state i+ 1 is connected to state P;. The third line
contains a sequence of N — 1 lowercase Latin letters, where the character at position i represents
the label on the edge between states P; and i + 1.

Output

Print a single integer representing the highest minimum period among all sequences formed by the
paths from the root to each state.

Sample input 1 Sample output 1

12 3
122355684106
baaabaaabaa

Maratona SBC de Programacao — Fase Zero — 2025 7

Ezplanation of sample 1:

In this example, the described tree is as follows:

We can verify the minimum periodicity in some state sequences of the tree:

¢ In the sequence that ends at state 2, forming the word b, the minimum periodicity is 0 since
it is not possible to form this word with two or more repetitions.

e In the sequence that ends at state 11, forming the word baba, the minimum periodicity is 2,
as it is possible to form this word by repeating the word ba twice, which has 2 characters.

e In the sequence that ends at state 9, forming the word baabaa, the minimum periodicity is 3,
as it is possible to form this word by repeating the word baa twice, which has 3 characters.

Maratona SBC de Programacao — Fase Zero — 2025 8

Problem C
Matrix Logic Circuits

Time limit: 0.5 s | Memory limit: 1 GiB

In quantum computing, logic gates operate a bit differently. Quantum logic gates are reversible,
and the number of input qubits is equal to the number of output qubits. Additionally, they can be
represented by 2V by 2V matrices, where N is the number of qubits.

A quantum circuit is a model for quantum computation where the computation is performed through
a sequence of quantum logic gates and measurement devices. A sequence of logic gates can be
represented by a matrix resulting from the multiplication of the matrices of the logic gates in the
order of application, which is the reverse order of how they are graphically represented. For example,
the circuit for adding two bits in its quantum form is:

i
|Cin) &b |15
|0> () % |Cout>

In this circuit, we have two variations of a logic gate that we will call CNOT (g, ¢;) and CCNOT(qc,, qcy, Gt)-
In the diagram, the qubit ¢; is marked with a @. The logic gate CNOT(g., ;) can be seen as being
equal to CCNOT(qc, ¢, qt), that is, the application of the logic gate CCNOT with q. = ¢¢; = gc,-

The logic gate CCNOT(qc,, ¢c,, q:) behaves by inverting the output qubit ¢, if both control qubits
de, and g, are set. Mathematically, ¢} = g+ ® (¢e; A gey)- In its matrix form,

1 if 7 has bits ¢; and co set and i ®2f = j

0 if i has bits ¢; and co set and i @ 2 # j
CONOT(Ge, Gesr @t)i = § oo

1 ifi=y

0 ifi#j

where i is the row and j is the column with 0 < 4,7 < 2V, and i contains bit k (0 < k) if
b%J mod 2 = 1. The operation @ is the bitwise exclusive or operation, commonly represented as "
in programming languages.

Thus, the matrix of the quantum circuit for adding two bits is given by
CNOT(go, q1) CNOT(q1, ¢2) CCNOT (g1, g2, g3) CNOT(go, 1) CCNOT(qo, g1, g3),

where the qubits qo,q1,g2,¢3 are used with inputs |A),[B),|Cin),[0) respectively and result in
|A),|B),|S),|Cout) respectively.

Your task is given the description of a circuit with logic gates CNOT and CCNOT in the order of
application, to print the resulting matrix.

Input

The first line of the input contains the integers N (2 < N < 8), the number of qubits in the circuit,
and M (1 < M < 10°), the number of logic gates in the circuit.

Maratona SBC de Programacao — Fase Zero — 2025 9

This is followed by M lines, each with the description of a logic gate. The first integer 7' (1 < T' < 2)
defines the type of the logic gate. If T' = 1, the description is for the logic gate CNOT(g¢, gr) and
is followed by distinct integers C and T' (0 < C,T < N). If T' = 2, the description is for the logic
gate CCNOT(qcy , go,, qr) and is followed by distinct integers C1, Co, and T (0 < C1,Co, T < N).
Note that the logic gates are given in the order of application.

Output

Print 2%V lines, each containing exactly 2V characters ’0’ or ’1’, corresponding to the complete matrix
of the quantum circuit.

Sample input 1 Sample output 1
21 1000
101 0001

0010

0100

Explanation of sample 1:

Here is the translation to English:

This circuit represents only the logical gate CNOT(c,t). If you have read about this logical gate,
the matrix may seem incorrect because it is different from what is found in the literature. However,
it is a matter of convention. When we compose qubit ¢ with qubit ¢, we are using the convention
that the first bit is less significant than the second.

i=0 representing [00) with c=0 and t=0 {1 0 0 O
i=1 representing [01) with c=1and t=0 [0 0 0 1
i=2 representing |10) with ec=0 and t=1 [0 0 1 O

i=3 representing |11) with e=1 and¢t=1 [0 1 0 O

So if the input is |00) or |10), both where ¢ = 0 and ¢ varies, the logical gate does not act. When
the input is |01) or |11), then the logical gate acts and inverts the value of t. This convention is
used, for example, by the Qiskit library.

Sample input 2 Sample output 2

1000000000000000
0000000000000100
0000000000000010
0000000000010000
0000100000000000
0100000000000000
0010000000000000
0000000000000001
0000000010000000
0000010000000000
0000001000000000
0001000000000000
0000000000001000
0000000001000000
0000000000100000
0000000100000000

N = NP =D

O O = O Ol

=R NN
w

w

Maratona SBC de Programacao — Fase Zero — 2025

10

Sample input 3
31
2012

Sample output 3

10000000
01000000
00100000
00000001
00001000
00000100
00000010
00010000

Sample input 4
31
101

Sample output 4

10000000
00010000
00100000
01000000
00001000
00000001
00000010
00000100

Maratona SBC de Programacao — Fase Zero — 2025 11

Problem D
Quantum Decoherence

Time limit: 0.5 s | Memory limit: 1 GiB

The SBC (Brazilian Computer Society) is developing various models of architectures for quantum
computers, with the goal of making them accessible to everyone in the future. One of the main
challenges faced by the development teams is quantum decoherence, which occurs when a qubit in
superposition (simultaneously representing states 0 and 1) collapses to 0 or 1 due to environmental
interference.

For each model developed, the rate of quantum decoherence will be analyzed. To do this, the qubits
will be observed in an isolated state and under normal temperature and pressure conditions. The
rate of quantum decoherence is the ratio between the number of qubits that collapsed under normal
temperature and pressure conditions and the number of qubits that were in superposition in the
isolated state.

Since there are several models, you have been asked to develop a program that calculates this rate.
After all, you need extracurricular hours to graduate, right?!

Input

The first line contains an integer N (10 < N < 10°) indicating the number of qubits in the computer.
The next two lines contain the strings S in an isolated state and 7' under normal temperature and
pressure conditions, respectively, of size N, composed of the characters {0, 1, *}, where ‘*’ indicates
a qubit in superposition.

It is guaranteed that at least one qubit is in superposition in the isolated state and that every qubit
that is not in superposition in string S remains identical in string 7'

Output

The output should contain the rate of quantum decoherence in decimal form, with exactly two
decimal places.

Sample input 1 Sample output 1
10 0.50

O0*1%%100%1

0110%100%*1

Sample input 2 Sample output 2
13 0.80
1x01%x100%01

010101001011

Sample input 3 Sample output 3
25 0.29
*10%1%110%01%011100%110%0

*1011%110001%011100%110%0

Maratona SBC de Programacao — Fase Zero — 2025 12

Problem E
Particle Energization

Time limit: 0.5 s | Memory limit: 1 GiB

There is a particle at point X = 1 on an infinite number line with a charge value of Y. When
interacting with the line, it gains unusual properties: by absorbing energy, this particle releases
enough kinetic energy to move ged(X,Y) steps along the number line, where ged(X,Y) is the
greatest common divisor of X and Y. That is, with each procedure, the particle moves from
position X to position X + ged(X,Y).

Scientists need to energize the particle K times in order to discover new properties about it; however,
they need to predict at which point the particle will stop after these procedures so that they can
reuse it in future studies.

Therefore, help determine what the final position X will be after the K processes.

Input

The input consists of a line with two numbers Y (1 <Y < 10%) and K (1 < K < 10%).

Output

Print an integer containing the position X where the particle will stop following the above proce-
dures.

Sample input 1 Sample output 1
4 3 8

Sample input 2 Sample output 2
7 15 70

Sample input 3 Sample output 3
123 123 10086

Maratona SBC de Programacao — Fase Zero — 2025 13

Problem F
Feynman Memorizing Numbers

Time limit: 2's | Memory limit: 1 GiB

Richard Feynman was the first to propose the use of a quantum phenomenon to perform computa-
tional routines. This was during a lecture presented at the First Conference on Physics Computing
at MIT. He showed that a classical computer would take a long time to simulate a simple quantum
physics experiment. Legend has it that he could memorize large sequences of numbers and mentally
calculate various properties at super-fast speeds.

The MythBusters, upon learning this, decided to verify this legend directly with Feynman using
their time machine. To verify, they would generate a sequence of numbers and ask how many ways
we can choose exactly 4 elements from this sequence that sum to X. The creation of the test was
assigned to you, the new intern of the MythBusters.

Your task is to write a program that, given a set of numbers and multiple query values, determines
how many quadruples {i,7,k,{} with 1 <i < j <k <l < N have a sum A; + A; + A + A; equal
to the queried values.

Input

The input consists of a single test case. The first line contains an integer N (4 < N < 1000),
representing the number of numbers in the sequence. The second line contains N integers a; (0 <
la;| < 1000), separated by spaces. The third line contains an integer @ (1 < @ < 4000), representing
the number of queries. Finally, each of the next @ lines contains an integer ¢; (0 < |g;| < 4000)
each, representing the target values queried.

Output

For each query, your program should print a line containing a single integer: the number of quadru-
ples whose sum is equal to g;.

Sample input 1 Sample output 1
8 6

-1 234 -842345

1

30

Explanation of sample 1:

The six quadruples that sum to 30 are:
o A, A9, A3, A7 — —1+23+4+4=230

o A, A3, A5, A¢ > —1+4+4+4+23=230

A, As, Ag, A7 — —1+44+23+4 =30

A1, Ay, A5, A7 = —1+23+4+4=30

Al,Ag,AG,A7—>—1+4+23+4:30

A, A9, A3, A5 — —1+23+4+4=30

Maratona SBC de Programacao — Fase Zero — 2025 14

Problem G
Grover and His Special Paths

Time limit: 1s | Memory limit: 1 GiB

Grover is an Indo-American computer scientist who wants to propose a quantum search algorithm
that offers a quadratic speedup over classical search algorithms for unstructured databases. To
achieve this, he needs to solve a problem in trees that is part of his research to develop his algorithm.

Grover has a tree with N vertices and N — 1 undirected edges, and his goal is to assign a value v;
to each vertex satisfying some constraints:

o 1 <y; <5

There are exactly cnt, vertices with the value v; =z, for 1 <z <5

For each vertex i, there is a set of values that the value of v; can take

Additionally, in this tree, there are P special paths for Grover, where a special path is rep-
resented by a pair of vertices (X;,Y;) (the paths may intersect, and a path may appear more
than once in the input) and for these paths, the values assigned to the vertices along the path
(in the order from X; to Y;) must form a strictly increasing sequence.

If there is a valid solution, print any one that satisfies the constraints imposed by Grover; otherwise,
print -1.

Input

The first line of the input will contain an integer N (1 < N < 5-10%), the number of vertices in the
tree. The second line of the input will contain 5 integers, the values of cnty, cnts, cnts, cnty, cnts
respectively. It is guaranteed that the sum cnty + cnts 4 ents + cnty + cnts = N.

The next N lines of input start with an integer M; (1 < M; < 5), followed by M; distinct integers
between 1 and 5, indicating the values that the i-th vertex can take. This is followed by N —1 lines,
each with two numbers U,V (1 < U,V < N) indicating an edge of the tree.

Next, there will be a line with a single integer P (1 < P < 5), indicating the number of special paths.
Finally, the next P lines of input will contain two numbers X;,Y; (1 < X;,Y; < N), indicating the
special paths.

Output

If a solution exists, print N integers vi, va, ..., v, indicating a valid solution to the problem.
Otherwise, print -1. If there are multiple valid answers, any one will be accepted.

15

Maratona SBC de Programacao — Fase Zero — 2025

o
<t
— ™ N
- — -
=] =t
2 w 2
~= =
=} 2] =t
(=] (=}
o ©@ Q
p— p—
5 < 5
<t
5] 5o}
n [Te) wn
L (4]
~= ~=
w. O 10 0 W0 W0 LwLw Lw v w M.. I I 0w w0 w
<] [a BRSO R R R <] (9 IS U AN U U R
=1 =
o AN MO MO OO OMOMOOMHOMMmMm o H MO OMOMOMHOMNMm
.IP. <+ NN N ANNANNNNAN .In... — AN NN NN N
m [@3Ne)) N O N m
= 011111111111643810170 11066 5 A A A H A A NN N O ©
n W WLWLWLWLWLW0LWLW0LW0LWLW0LWLMWOMHOOM—HWwWwN~M—A L~ wn ~— 0 WO W LWWLW—A ANM<H O A

Maratona SBC de Programacao — Fase Zero — 2025

16

Sample input 3

= = b O -
= O
N O
w O
e

(=Y

Sample output 3

-1

Sample input 4

—
o

\leSH.bSKOI\)mH.bl—\»—Lw»h[\)wv—kl—\»—t
N
o N
o1

N R, NP PO O 00OTONEFE WO, NWERE P OoTN
S

10

Sample output 4

1332531345

Maratona SBC de Programacao — Fase Zero — 2025 17

Problem H
Binary Palindromic Harmony

Time limit: 0.5 s | Memory limit: 1 GiB

Several quantum alternatives to traditional algorithms have been researched to solve a variety of
problems. Using quantum logic gates, it is possible to gain performance in some specific types
of tasks, leading to improvements, for example, in number factorization algorithms and data set
searches.

Shor is working on a quantum algorithm for recognizing palindromes in binary sequences. To do
this, he needs to generate a large number of examples, and he decided that he would need to know
for a given positive integer X, what the largest integer Y less than or equal to X would be, whose
binary representation is palindromic.

Shor has a lot of experience with quantum algorithms, but he is having difficulty creating a classical
algorithm that solves this problem. Can you help?

Input

The only line of input contains the integer X (1 < X < 10'8).

Output

Output a single line with The corresponding integer Y.

Sample input 1 Sample output 1
9945 9945

Sample input 2 Sample output 2
11 9

Sample input 3 Sample output 3
154 153

Maratona SBC de Programacao — Fase Zero — 2025 18

Problem |

Inspecting the Entanglement

Time limit: 1s | Memory limit: 1 GiB

In the laboratory of the Institute of Quantum Physics, a team of scientists is conducting a new
experiment. The idea is to reconstruct the evolution of a set of entangled particles over time. The
problem is that the experiment cannot be observed directly.

Therefore, the laboratory has a network of N quantum sensors distributed in space. The sensors
detect various properties of the particles (spin, polarization, angular momentum, etc.). However,
for technical and energy reasons, the same sensor cannot be activated for a very short time (to avoid
noise) and cannot remain active for too long (to avoid overheating).

The experiment will last T" seconds. To avoid wasting energy and to ensure that all information is
collected, exactly one of the sensors must be on each second, collecting information, and no sensor
should remain on after the end of the experiment.

Each sensor 7 at time j provides a reliability score ¢(i, j), reflecting the quality of the measurement at
that moment. The team’s challenge is to select which sensors to activate throughout the experiment,
ensuring that after a sensor is activated, it must remain active for at least L seconds and at most
U seconds. Additionally, a sensor can be used multiple times during the experiment, as long as the
time it remains active is respected.

The final reliability of the experiment is equal to the sum of the reliability of the chosen sensors at
each second during the test. The team’s goal is to select the sensors in such a way as to maximize the
reliability of the reconstruction of the quantum state. Since the physicists are very busy studying
other quantum matters, they have sent this problem to the teams of the Fase Zero da Maratona
SBC de Programagao to solve.

Input

The first line contains two integers N (1 < N < 5-10%) and T (1 < T < 100) representing the
number of sensors and the duration of the experiment, respectively.

The next N lines each contain 7' integers, where the i-th line’s j-th integer will be ¢(i,7) (1 <
c(i,j) <5-107).

The last line contains two integers L and U (1 < L < U < T) representing the minimum and
maximum time that each sensor can remain active.

Output

Output a single line with An integer representing the highest possible reliability. If there is no
solution for the given constraints, print -1.

Sample input 1 Sample output 1

16

= o= R NDW

O NP W o
N O N
L
o NN

Maratona SBC de Programacao — Fase Zero — 2025

19

Sample input 2

35
23212
11512
12215
23

Sample output 2

13

Sample input 3

N R =N W

NN = W o
N O N
= e
o NN

Sample output 3

-1

Maratona SBC de Programacao — Fase Zero — 2025 20

Problem J
Journey of the Particles

Time limit: 1s | Memory limit: 1 GiB

An experiment at the Large Hadron Collider is being set up to test phase properties of various
different particles. There are N filters arranged in a circle, where the i-th filter allows particles with
a phase less than or equal to its limit A; to pass.

An experiment begins with the release of a particle at the position of the i-th filter, with an initial

phase set to A;. When passing through filter 4, including the first one, the particle:

e Is filtered out if the phase of the particle is greater than the limit A;, ending the experiment.

e Otherwise, the particle passes through the filter, increases its phase by K, and moves to the
next filter on the right, the (i mod N) + 1-th filter.

We want to simulate the result of this experiment to compare with the results verified empirically.
To achieve this, we need to create a vector B, of size N, where B; (1 < B; < N) is the position of
the filter that stopped the particle that started at position 3.

Input
The first line contains two integers N (1 < N <2-10°) and K (1 < K < 10?).

The second line contains N integers Ay, Ao, ..., Ay (=10° < A4; < 10%).

Output

Print a line containing N integers By, Bo, ..., By.
Sample input 1 Sample output 1
41 2322
4312
Sample input 2 Sample output 2
55 11111
-10 -5 0 5 10
Sample input 3 Sample output 3
6 2 235562
1245923

Maratona SBC de Programacao — Fase Zero — 2025 21

Problem K
K Missing Elements

Time limit: 2's | Memory limit: 1 GiB

In the core of Station Q-42, scientists have created the most advanced simulator of combinatorial
quantum states: the Enhanced Path Entangler, also known as EPE. The EPE has been programmed
to study quantum walks in permutation spaces. In a quantum walk, the walker evolves in a super-
position of positions, following the rules of quantum mechanics.

The input to the simulator is a permutation A of size N. Each index ¢ of the permutation has an
integer A; associated with it, representing a node in a Hilbert space. We define a quantum walk
that follows the increasing evolution criterion as a subsequence of indices i1 < i2... < iy (M > 0)
such that A;; < A4;,... < A;,,. Each node ¢ also has a quantum energy charge stored at position
B; of the vector B.

When simulating all possible quantum walks that follow the increasing evolution criterion, the EPE
collapsed the state of each path into a sum of the quantum energies of the visited nodes. Each of
these sums was recorded in a vector C, representing all the amplitudes of valid paths collapsed into
classical energy.

To organize the data, the vector C' was sorted in non-increasing order, but something unexpected
happened: a decoherence caused the vector C to get lost in the middle of the simulation. Your goal
as an analyst at Station Q-42 is to reconstruct the K largest values of the vector C, or report if C
does not have that element.

Input
The first line contains two integers N (1 < N < 10%) and K (1 < K < 10%).

The second line contains N integers Ay, As,..., Ay (1 < A; < N), it is guaranteed that A is a
permutation.

The third line contains N integers By, Ba,..., By (1 < B; < 104).

Output

Print a line containing K integers C; (1 < ¢ < K). If a particular C; does not exist, print —1 in its
place.

Sample input 1 Sample output 1

3221

=N W
N = b
= W

Maratona SBC de Programacao — Fase Zero — 2025

Ezplanation of sample 1:

The increasing subsequences of A are:

{41} ={2} > B =1
{A}={1} > By=2
{A3} ={3} > B3=1
{Al,Ag} = {2,3} — B1+ B3 =2
{Az,Ag} = {1,3} — By+Bs=3

22

Thus, the vector C after sorting is {3,2,2,1,1}. Since K = 4, it is only necessary to print

{Cl, cey 04}

Sample input 2

16
234
111

i i S

Sample output 2

433332222221111-1

Explanation of sample 2:

All the 2% — 1 = 15 sequences of A are increasing. Since K = 16, then Cyg = —1.

Maratona SBC de Programacao — Fase Zero — 2025 23

Problem L
qPhones Production Line

Time limit: 0.5 s | Memory limit: 1 GiB

The Brazilian Society of Smartphones (SBC) is developing a new model of smartphones that utilizes
quantum computing, the qPhones. Unlike traditional devices that store bits, this new architecture
will use qubits.

A qubit (quantum bit) is the basic unit of quantum information, just as a bit is in classical comput-
ing. However, while a classical bit can only assume one state at a time (0 or 1), a qubit can exist
in superposition, assuming multiple states simultaneously as a “quantum mixture” of 0 and 1, each
with a probability of being measured when observed.

Thus, if a device can store qubits, all of its combinations can be represented simultaneously due to
superposition. For example, if a device stores 3 qubits, we can have the representation of 23 = 8
superposed classical states, which are 000, 001, 010, 011, 100, 101, 110, and 111.

In practice, we can assume that to simulate 1 qubit we need 2 bits, to simulate 2 qubits we need 4
bits, to simulate 3 qubits we need 8 bits, and so on. Therefore, to fully simulate the memory of a
classical cell phone with M megabytes (MB), the engineers at SBC need to ensure that the qubits
of the new device can represent at least M megabytes. Consider that 1 MB is equivalent to 108
bytes.

You have recently been hired by SBC to assist in the production line of the new quantum smart-
phones. Your task is, given the memory value of M megabytes, to determine the minimum number
of qubits necessary to simulate all possible states of a classical device with that amount of memory.

Input

An integer M (1 < M < 10'9) representing the amount of memory in MB of a traditional device.

Output

Output a single line with An integer representing the minimum number of qubits necessary to
simulate all possible states of a classical device with M megabytes of memory.

Sample input 1 Sample output 1
1 23
Sample input 2 Sample output 2
17 28

Maratona SBC de Programacao — Fase Zero — 2025 24

Problem M
Spooky Movement at a Distance

Time limit: 1s | Memory limit: 1 GiB

Charles is a great physicist, cryptographer, and computer scientist, known for his significant contri-
butions, including foundational work on the relationship between physics and information. During
his studies on quantum teleportation, Charles discovered a quantum field with NV positions num-
bered from 1 to N. In an experiment, Charles can place a particle initially in any position of the
quantum field. At each moment in time, the particle can decide whether to teleport to a position
greater than its current position or to remain still and finish its path. Thus, there are 2V —1 possible
paths.

Let a path be a sequence of positions visited by a particle in an experiment. Each position ¢
(1 <i < N) of the quantum field has an associated coefficient A;. Charles defines the beauty of a
path as the greatest common divisor of all the coefficients of the positions visited in the path.

Charles will perform several operations in sequence, which are:
e Operation 1 X: Consider that all possible paths have the same probability of being taken.
What is the probability that the path taken has beauty equal to X7

e Operation 2 I X: Update the value of the coefficient A; to be X.

Can you help Charles with his experiments?

Input

The first line of the input contains the integer N (1 < N < 10°), the number of positions in the
quantum field. The second line contains N positive integers Ay, As, ..., Ay (1 < A; < 10°).

The third line of the input contains the integer Q (1 < @ < 10°), the number of queries. The next
@ lines will contain operations. Each line is an operation identified by the integer 7' (1 < T' < 2).
Operations with T' = 1 are followed by an integer X, and operations of type 2 are followed by the
integers I (1 <1 < N) and X. In both operations, 1 < X < 10°.

Output

For each experiment conducted by Charles, print the probability g that the experiment has beauty

equal to X in the form P-Q~! (mod 998244353). Tt is guaranteed that P is a non-negative integer
and @ is a positive integer, and that Q! with the property QQ ' = 1 exists (mod 998244353).

Sample input 1 Sample output 1

931694730
248 465847365
732045859
865145106
0
0

i ol o o e e DI E T 0

g W oo N

Maratona SBC de Programacao — Fase Zero — 2025

Ezplanation of sample 1:

The 15 possible paths that can be taken in an experiment are:

e {a1} ={1} - ged(1) =1
e {az} ={2} — ged(2) =2
e {as} ={4} — ged(4) =4
o {as} = {8} —ged(8) =8
o {a1,a2} ={1,2} — gcd(1,2) =
e {aj,a3} ={1,4} — ged(1,4) =
e {aj,a4} ={1,8} — ged(1,8) =
o {ag,as} ={2,4} — ged(2,4) =
o {ag,a4} ={2,8} — gcd(2,8) =

{a27 as, CL4} - {2747 8} — ng(

2

{as,as} = {4,8} — gcd(4,8) =4
{a1,a9,a3} = {1,2,4} — ged(1,2,4
{a1,a2,a4} = {1,2,8} — gcd(1,2,8
{a1,as,a4} = {1,4,8} — ged(1, 4,8

)=
)=
)=
,8) =
1

L4 {a17a27a37a4} = {172747 8} — ng(72747 8) =1

where ged(X) is the greatest common divisor of the set X.

Thus:

e The probability of the beauty of an experiment being equal to 1 is

e The probability of the beauty of an experiment being equal to 2 is

The probability of the beauty of an experiment being equal to 4 is
The probability of the beauty of an experiment being equal to 8 is
The probability of the beauty of an experiment being equal to 3 is
The probability of the beauty of an experiment being equal to 5 is

Glo Glo &Gl= Gl Gl &l

25

Sample input 2

8 29 15

= N = = 202w
= NN -
o o1 N
N
ol

]

Sample output 2

0
0
0
855638017

Explanation of sample 2:

After the operation 2 1 25, the sequence of coefficients becomes (25,29, 15).

operation, the sequence of coefficients was (18,29, 15).

Before the type 2

